sábado, 7 de dezembro de 2019

Ligações químicas são conjunções estabelecidas entre átomos para formarem moléculas ou, no caso de ligações iônicas ou metálicas, agregados atômicos (superátomos) organizados de forma a constituírem a estrutura básica de uma substância ou composto. Na natureza existem por volta de uma centena de elementos químicos. Os átomos destes elementos, ao se unirem, formam a grande diversidade de substâncias.
As ligações químicas podem ocorrer através da doação e recepção de elétrons entre os átomos, que se transformam em íons que se mantêm unidos via a denominada ligação iônica. Como exemplo tem-se o cloreto de sódio (NaCl). Compostos iônicos conduzem eletricidade no estado líquido ou dissolvidos, mas não quando sólidos. Eles normalmente têm um alto ponto de fusão e alto ponto de ebulição. Uma analogia seria comparar os elementos químicos ao alfabeto que, uma vez organizado seguindo uma dada regra ou ordem, leva as letras a formarem palavras imbuídas de significado distinto e bem mais amplo daquele disponível quando separadas.
Os átomos, comparando, seriam as letras, e as s organizados seriam as palavras. Na escrita não podemos simplesmente ir juntando as letras para a formação de palavras: aasc em português não tem significado (salvo se corresponder a uma sigla); porém se organizarmos essas mesmas letras teremos a palavra casa, que certamente tem significado "físico". Assim como na escrita, há regras físico-químicas a serem obedecidas, e a união estabelecida entre átomos não ocorre de qualquer forma, devendo haver condições apropriadas para que a ligação entre os átomos ocorra, tais como: afinidade, contato, energia, etc.
Outro tipo de ligações químicas ocorre através do compartilhamento de elétrons: a ligação covalente. Como exemplo tem-se a água (H2O). Dá-se o nome de molécula apenas à estrutura em que todos os seus átomos conectam-se uns aos outros de forma exclusiva via ligação covalente. Existe também a ligação metálica onde os elétrons das últimas camadas dos átomos do metal soltam-se dos respectivos íons formados e passam a se movimentar livremente entre todos os íons de forma a mantê-los unidos. Um átomo encontra-se assim ligado não apenas ao seu vizinho imediato, como na ligação covalente, mas sim a todos os demais átomos do objeto metálico via uma nuvem de elétrons de longo alcance que se distribui entorno dos mesmos.


Regra do octeto

Um certo número de elementos adquire estabilidade eletrônica quando seus átomos apresentam oito elétrons na sua camada mais externa, e usualmente esses se ligam de forma a buscarem completar esses oito elétrons, especificamente ao completar suas camadas externas. Dadas as variações na distribuição eletrônica, existem muitas exceções para essa regra, a exemplo do Hidrogênio (H) que se estabiliza com dois elétrons na última camada.[1] Como exemplo da regra do octeto, válida contudo de forma bem regular para os principais elementos representativos da tabela periódica, temos o caso do átomo de carbono, que é tetravalente (pode realizar quatro ligações), e além dele todos os átomos que pertencem a família de número 14 da tabela periódica que, também tetravalentes, encontram-se no eixo central dessa regra (Octeto). De fato, a regra do octeto vale somente para os elementos representativos do nível dois, como o carbono, o nitrogênio e o oxigênio (que são alguns dos elementos mais utilizados no ensino de química). Ao descer para o nível três, porém, os átomos já tendem a adquirir uma configuração estável com 18 elétrons, e para outro níveis já se torna difícil estabelecer um padrão para as distribuições eletrônicas, devidos às variações citadas anteriormente. A regra é, contudo, uma ótima aproximação para o ensino a nível médio, porém se torna obsoleta para campos de engenharia química, e nuclear, por exemplo.
A regra do octeto termina com 8 elétrons em sua ultima camada para todos os gases nobres,exceto o hélio que termina com 2 elétrons na camada de valência.[2]

Ligações Iônicas ou Eletrovalentes

Ver artigo principal: Ligação iônica
O lítio tem um elétron em sua camada de valência, mantido com pouca dificuldade porque sua energia de ionização é baixa. O flúor possui 7 elétrons em sua camada de valência. Quando um elétron se move do lítio para o flúor, cada íon adquire a configuração de gás nobre. A energia de ligação proveniente da atração eletrostática dos dois íons de cargas opostas tem valor negativo suficiente para que a ligação se torne estável.


x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Ligações iônicas são um tipo de ligação química baseada na atração eletrostática entre dois íons carregados com cargas opostas.[3][4] Na formação da ligação iônica, um metal tem uma grande tendência a perder elétron(s), formando um íon positivo ou cátion. Isso ocorre devido à baixa energia de ionização de um metal, isto é, é necessária pouca energia para remover um elétron de um metal.
Simultaneamente, o átomo de um ametal (não-metal) possui uma grande tendência a ganhar elétron(s), formando um íon de carga negativa ou ânion. Isso ocorre devido à sua grande afinidade eletrônica. Sendo assim, os dois íons formados, cátion e ânion, se atraem devido a forças eletrostáticas e formam a ligação iônica.
Se estes processos estão interligados, ou seja, o(s) elétron(s) perdido(s) pelo metal é(são) ganho(s) pelo ametal, então, seria "como se fosse" que, na ligação iônica, houvesse a formação de íons devido à "transferência" de elétrons do metal para o ametal.[5] Esta analogia simplista é muito utilizada no Ensino Médio, que destaca que a ligação iônica é a única em que ocorre a transferência de elétrons. A regra do octeto pode ser utilizada para explicar de forma simples o que ocorre na ligação iônica. Exemplo: Antes da formação da ligação iônica entre um átomo de sódio e cloro, as camadas eletrônicas se encontram da seguinte forma:
11Na - K = 2; L = 8; M = 1
17Cl - K = 2; L = 8; M = 7
x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


O sódio possui 1 elétron na última camada (camada M). Bastaria perder este elétron para que ele fique "estável" com 8 elétrons na 2ª camada (camada L). O cloro possui 7 elétrons na sua última camada (camada M). É bem mais fácil ele receber 1 elétron e ficar estável do que perder 7 elétrons para ficar estável, sendo isto o que acontece.
Sendo assim, é interessante ao sódio doar 1 elétron e ao cloro receber 1 elétron. No esquema abaixo, está representado este processo, onde é mostrado apenas a camada de valência de cada átomo. Seria como se fosse que os átomos se aproximam e ocorre a transferência de elétron do sódio para o cloro:
Estrutura de Lewis

x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


O resultado final da força de atração entre cátions e ânions é a formação de uma substância sólida, em condições ambientes (25 °C, 1 atm). Não existem moléculas nos sólidos iônicos. Em nível microscópico, a atração entre os íons acaba produzindo aglomerados com formas geométricas bem definidas, denominadas retículos cristalinos. No retículo cristalino cada cátion atrai simultaneamente vários ânions e vice-versa.

Características dos compostos iônicos

  • Apresentam forma definida, são sólidos nas condições ambientes;
  • Possuem altos ponto de fusão e ponto de ebulição;
  • Conduzem corrente elétrica quando dissolvidos em água ou fundidos;
  • x
FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

OBS.: O hidrogênio faz ligação iônica com metais também. Embora possua um elétron, não é metal, logo, não tende a perder esse elétron. Na verdade, o hidrogênio tende a receber um elétron ficando com configuração eletrônica igual à do gás hélio.

Ligações Covalentes ou Moleculares

Ligação covalente ou molecular é aquela onde os átomos possuem a tendência de compartilhar os elétrons de sua camada de valência, ou seja, de sua camada mais instável. Neste tipo de ligação não há a formação de íons, pois as estruturas formadas são eletronicamente neutras, como o exemplo abaixo, da água. O átomo de oxigênio (O) necessita de dois elétrons para ficar estável e o H irá compartilhar seu elétron com o O. Sendo assim o O ainda necessita de um elétron para se estabilizar, então é preciso de mais um H e esse H compartilha seu elétron com o O, estabilizando-o. Sendo assim é formado uma molécula o H2O.
H2O lc.svg
x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


OBS.: Ao compartilharem elétrons, os átomos podem originar uma ou mais substâncias simples diferentes. Esse fenômeno é denominado alotropia. Essa substâncias são chamadas de variedades alotrópicas. As variedades podem diferir entre si pelo número de átomos no retículo cristalino. Ex.: CarbonoOxigênioEnxofreFósforo.

A Formação de uma ligação covalente diminui a energia potencial

Para ocorrer uma ligação iônica, o efeito do abaixamento de energia da energia reticular precisa ser maior que o resultado liquido da combinação do efeito de elevação da energia de ionização (EI) e da afinidade eletrônica (AE). Muitas vezes, isto não é possível, em especial quando as energias de ionização de todos os átomos envolvidos são grandes. Isto acontece, por exemplo, quando não-metais se combinam para formar moléculas. Nesses casos, a natureza utiliza um caminho diferente para diminuir a energia - o compartilhamento de elétrons.
Assim que os dois átomos se aproximam, o elétron de cada átomo começa a sentir a atração de ambos os núcleos. Isto provoca um deslocamento da densidade eletrônica em torno de cada átomo para a região entre os dois átomos. Portanto assim que a distância entre os dois núcleos diminui, ocorre um aumento na probabilidade de encontrarmos ambos elétrons nas proximidades de ambos os núcleos. De fato, quando a molécula é formada, cada um dos átomos de hidrogênio na molécula de H2 realiza o compartilhamento dos dois elétrons.
Na molécula de H2, o acúmulo da densidade eletrônica entre os dois átomos atrai ambos os núcleos e faz com que eles se mantenham juntos. Entretanto, como possuem a mesma carga, os dois núcleos se repelem, assim como os dois elétrons. Portanto, na molécula formada, os átomos são mantidos a uma distância na qual todas essas atrações e repulsões estão balanceadas.
De maneira geral, os núcleos são mantidos separados e a força liquida de atração produzida pelo compartilhamento do par de elétrons é chamada de ligação covalente.
Cada ligação covalente é caracterizada por duas grandezas, a distância média entre dois núcleos, mantidos juntos pela ligação, e a energia necessária para separar os dois átomos para produzir, novamente, os átomos neutros. Na molécula de hidrogênio, as forças atrativas puxam os núcleos para uma distância de 75 pm, e essa distância é chamada comprimento de ligação ( ou, as vezes, distância de ligação). Pelo fato de uma ligação covalente manter os átomos unidos, é necessário realizar trabalho (energia precisa ser fornecida) para separá-los. A quantidade de energia necessária para "quebrar" a ligação (ou a energia liberada quando a ligação é formada) é chamada energia de ligação.

Características dos compostos moleculares

  • Podem ser encontrados nos três estados físicos;
  • Apresentam ponto de fusão e ponto de ebulição menores que os compostos iônicos;
  • Quando puros, não conduzem eletricidade;
  • Quando no estado sólido, podem apresentar dois tipos de retículos cristalinos.
  • x
FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Ligações covalentes coordenadas

Este tipo de ligação ocorre quando os átomos envolvidos já atingiram a estabilidade com os oito ou dois elétrons na camada de valência. Sendo assim eles compartilham seus elétrons disponíveis, como se fosse um empréstimo para satisfazer a necessidade de oito elétrons do elemento com o qual está se ligando.

Ligação metálica

A ligação metálica ocorre entre metais, isto é, átomos de alta eletropositividade (tendência a doar elétrons).
Num sólido, os átomos estão dispostos de maneira variada, mas sempre próximos uns aos outros, compondo um retículo cristalino. Enquanto certos corpos apresentam os elétrons bem presos aos átomos, em outros, algumas dessas partículas permanecem com certa liberdade de se movimentarem no cristal. É o que diferencia, em termos de condutibilidade elétrica, os corpos condutores dos isolantes. Nos corpos condutores, muitos dos elétrons se movimentam livremente no cristal, de forma desordenada, isto é, em todas as direções. E, justamente por ser caótico, esse movimento não resulta em qualquer deslocamento de carga de um lado a outro do cristal.
Aquecendo-se a ponta de uma barra de metal, coloca-se em agitação os átomos que a formam e os que lhe estão próximos. Os elétrons aumentam suas oscilações e a energia se propaga aos átomos mais internos. Neste tipo de cristal os elétrons livres servem de meio de propagação do calor - chocam-se com os átomos mais velozes, aceleram-se e vão aumentar a oscilação dos mais lentos. A possibilidade de melhor condutividade térmica, portanto, depende da presença de elétrons livres no cristal. Estudando-se o fenômeno da condutibilidade elétrica, nota-se que, quando é aplicada uma diferença de potencial, por meio de uma fonte elétrica às paredes de um cristal metálico, os elétrons livres adquirem um movimento ordenado: passam a mover-se do polo negativo para o polo positivo, formando um fluxo eletrônico orientado na superfície do metal, pois como se trabalha com cargas de mesmo sinal, estas procuram a maior distância possível entre elas. Quanto mais elétrons livres no condutor, melhor a condução se dá.
Os átomos de um metal têm grande tendência a perder elétrons da última camada e transformar-se em cátions. Esses elétrons, entretanto, são simultaneamente atraídos por outros íons, que então o perdem novamente e assim por diante. Por isso, apesar de predominarem íons positivos e elétrons livres, diz-se que os átomos de um metal são eletricamente neutros.
Os átomos mantêm-se no interior da rede não só por implicações geométricas, mas também por apresentarem um tipo peculiar de ligação química, denominada ligação metálica. A união dos átomos que ocupam os "nós" de uma rede cristalina dá-se por meio dos elétrons de valência que compartilham (os situados em camadas eletrônicas não são completamente cheias). A disposição resultante é a de uma malha formada por íons positivos e uma nuvem eletrônica.

Teoria da nuvem eletrônica

Segundo essa teoria, alguns átomos do metal "perdem" ou "soltam" elétrons de suas últimas camadas; esses elétrons ficam "passeando" entre os átomos dos metais e funcionam como uma "cola" que os mantém unidos. Existe uma força de atração entre os elétrons livres que se movimentam pelo metal e os cátions fixos.

Propriedade dos metais

  • Brilho metálico característico;
  • Resistência à tração;
  • Condutibilidade elétrica e térmica elevadas;
  • Alta densidade;
  • Maleabilidade (facilidade em serem reduzidos a chapas e lâminas finas, processo conhecido como laminação);
  • Ductilidade (facilidade em serem conformados em fios, processo conhecido como trefilagem);
  • Ponto de fusão elevado;
  • Ponto de ebulição elevado;
  • x
FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D






Camada de valência é a última camada a receber elétron no átomo ou o nível de maior número quântico principal e secundário na distribuição eletrônica. Normalmente os elétrons pertencentes à camada de valência são os que participam de alguma ligação química, pois são os mais externos. A contagem e distribuição dos elétrons é feita sempre de dentro (perto do núcleo) para fora.[1][2]
Por Exemplo :  - têm 8 eletrons na camada de valência (). A camada de valência é a última camada de distribuição eletrônica, contendo o subnível mais energético. O Diagrama de Pauling estabelece que os átomos podem possuir sete camadas de distribuição atômica. Estas camadas são denominadas .
x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Notação de Lewis do Carbono , ilustrando a camada de valência.
Cada uma destas camadas possuem um número máximo de elétrons. Assim, as camadas acima possuem, respectivamente  elétrons. A camada de valência necessita, na maior parte dos átomos, de  elétrons para que seja estável. Essa é a teoria do octeto.
Quando não há estabilidade, os átomos tendem a fazer ligações químicas com elementos que possam proporcionar os elétrons faltantes.
Os gases nobres possuem  elétrons em sua camada de valência, a única exceção é Hélio, que possui  elétrons. Todos são estáveis, não necessitando realizar ligações químicas para adquirir estabilidade.
Como exemplo das ligações ocorridas em razão dos elétrons presentes na camada de valência, estão o Oxigênio, que possui  elétrons na última camada e o Hidrogênio, que possui  elétron na ultima camada. O Oxigênio necessita de dois elétrons para ficar estável e o Hidrogênio, de um elétron. Desta forma, ocorre uma ligação em que dois átomos de Hidrogênio compartilham cada um, 1 elétron com o Oxigênio. Assim, o Oxigênio adquire a estabilidade através dos dois elétrons compartilhados, assim como o Hidrogênio, que adquire mais um elétrons na camada de valência. Essa é a ligação que ocorre formando moléculas de água.[3]
Outro exemplo conhecido é o cloreto de sódio ou sal de cozinha. O Cloro possui  elétrons na camada de valência. O Sódio, por sua vez, possui um elétron na camada de valência. Assim, o Sódio se torna um cátion, pois perde um elétron, e o Cloro se torna um ânion, pois ganha um elétron.
A representação da tabela periódica permite que, através de uma breve análise, se conclua a respeito da quantidade de eletrons da última camada. Assim, os grupos  possuem, respectivamente,  elétrons na última camada. Além disso, para o restante dos elementos presentes na tabela periódica, é possível identificar o número de elétrons da camada de valência através da representação da distribuição eletrônica. Assim, tem-se a respeito do elemento Ferro:

Exemplos[editar | editar código-fonte]

Ferro  tem número atômico igual a [1]
Distribuição eletrônica
x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Camada de valência: no último nível que é  com  elétrons
Assim, o elemento Ferro  possui  elétrons em sua camada de valência.
Assim como o elemento:
Prata : número atômico igual a 
Distribuição eletrônica: 
x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Camada de valência: no último nível que é  com  elétrons
Assim, o elemento Prata  possui  elétron em sua camada de valência.
Desta forma, é possível ligações iônicas ou covalentes, em diversos elementos e sua provável transformação em cátions e ânions.
Em resumo, a camada de valência sempre será a última camada da distribuição eletrônica.



Na químicavalência é um número que indica a capacidade que um átomo de um elemento tem de se combinar com outros átomos, capacidade essa que é medida pelo número de elétrons que um átomo pode dar, receber, ou compartilhar de forma a constituir uma ligação química. Isto está relacionado com o número de espaços omissos nas camadas eletrônicas do átomo. Os adjetivos que descrevem as valências atômicas usam prefixos gregos, como monobitri e tetra para as valências respectivamente iguais a 1, 2, 3, 4. Grupo dos elementos principais que são os metais geralmente possuem apenas uma valência, igual ao número de elétrons na camada de valênciaMetais de transição freqüentemente possuem diversas valências (veja lista abaixo).[1][2]
O termo valência não significa o mesmo que o termo número de oxidação. Para um símples composto iônico o número de oxidação de um metal será geralmente igual ao de valência, embora para compostos covalentes que envolvem não-metais haja frequentemente uma diferença.[3]

]

Lista de distribuição eletrônica comuns para os primeiros 103 elementos em ordem de número atômico:
Número atômicoNome do elementoDistribuição eletrônica
1Hidrogênio1
2Hélio2
3Lítio
4Berílio2
5Boro3
6Carbono2, 4
7Nitrogênio3, 5
8Oxigênio2, 6
9Flúor7
10Neônio0
11Sódio1
12Magnésio2
13Alumínio3
14Silício4
15Fósforo3, 5
16Enxofre2, 4, 6
17Cloro1, 3, 5, 7
18Argônio0
19Potássio1
20Cálcio2
21Escândio3
22Titânio3, 4
23Vanádio2, 3, 4, 5
24Crômio0, 2, 3, 6
25Manganês2, 3, 4, 6, 7
26Ferro0, 2, 3
27Cobalto2, 3
28Níquel0, 2, 3
29Cobre1, 2
30Zinco2
31Gálio2, 3
32Germânio4
33Arsênio3, 5
34Selênio2, 4, 6
35Bromo1, 3, 5, 7
36Criptônio0
37Rubídio1
38Estrôncio2
39Ítrio3
40Zircônio4
41Nióbio3, 5
42Molibdênio0, 2, 3, 4, 5, 6
43Tecnécio2, 3, 4, 6, 7
44Rutênio0, 3, 4, 6, 8
45Ródio3, 4
46Paládio0, 2, 4
47Prata1, 3
48Cádmio2
49Índio1, 3
50Estanho2, 4
51Antimônio3, 5
52Telúrio2, 4, 6
53Iodo1, 3, 5, 7
54Xenônio0
55Césio1
56Bário2
57Lantânio3
58Cério3, 4
59Praseodímio3
60Neodímio3
61Promécio3
62Samário2, 3
63Európio2, 3
64Gadolínio3
65Térbio3
66Disprósio3
67Hólmio3
68Érbio3
69Túlio2, 3
70Itérbio2, 3
71Lutécio3
72Háfnio4
73Tantálio3, 5
74Tungstênio0, 2, 4, 5, 6
75Rênio1, 4, 7
76Ósmio0, 2, 3, 4, 6, 8
77Irídio3, 4
78Platina0, 2, 4
79Ouro1, 3
80Mercúrio1, 2
81Tálio1, 3
82Chumbo2, 4
83Bismuto3, 5
84Polônio2, 3, 4
85Astato1, 3, 5, 7
86Radônio0
87Frâncio1
88Rádio2
89Actinídio3
90Tório4
91Protactínio4, 5
92Urânio3, 4, 5, 6
93Netúnio2, 3, 4, 5, 6
94Plutônio2, 3, 4, 5, 6
95Amerício2, 3, 4, 5, 6
96Cúrio2, 3, 4
97Berquélio2, 3, 4
98Califórnio2, 3, 4
99Einstênio2, 3
100Férmio2, 3
101Mendelévio2, 3
102Nobélio2, 3
103Laurêncio3


x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Emissão espontânea é o processo pelo qual uma fonte de luz como um átomomoléculananocristal ou núcleo em estado excitado sofre uma transição para um estado de energia inferior, o estado fundamental, e emite um fotão.[1][2] A emissão espontânea de luz é um processo fundamental que desempenha um papel essencial em inúmeros fenómenos naturais e é a base de inúmeras aplicações, como os tubos fluorescentes, ecrãs de televisão, lasers e diodos emissores de luz (LED).[1]

Modelo matemático[editar | editar código-fonte]

Se uma fonte de luz (um átomo, por exemplo) está em um estado excitado com a energia , pode decair espontaneamente (sem nenhuma ajuda externa) para o estado fundamental, de energia , liberando a diferença de energia entre os dois estados, na forma de um fóton. O fóton terá frequência  e energia , dado pela equação de Planck:

x

FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EN CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



onde  é a constante de Planck. Um diagrama de níveis de energia, que ilustram o processo pode ser visto na figura ao lado.[3][4]